Python J

Robert Lupton

30 May 2011

Interpreted Languages

@ Fast development (no compile-link-run cycle)
@ Interactive development
@ High level (no need to worry about pointers)

Interpreted Languages Intro to Python Libraries Beyond Libraries

Python

@ Powerful builtins
@ Object oriented

@ Rich libraries

@ dynamic typing

Official Tutorial and Manual

http://docs.python.org/tutorial/index.html

v

There are two slightly inconsistent versions of python in the
wild, python 2.x and python 3.x

Within the 2.x series (currently 2.7) features were added
from time to time. If you're concerned about portability
you may want to avoid newer constructions (e.g. X if
LOGICAL else Y, with) Eventually we'll all have to move to
python 3 (currently at 3.2), but I'm not in a hurry.

http://docs.python.org/tutorial/index.html

XKCD

/

T LEARNED ITLAST
NIGHT! EVERYTHING
15 S0 SIMPLE!

[
HELLO WORLD IS JusT
print "Hello, world}"

T DUNNO...
DYNAMIC TYPING?
WHITESPRCE?

COME JoIN US!
PROGRAMMING
1S FUN AGAIN!
IT’S A WHOLE
NEW WORLD
_ UP HERE!

BUT HOW ARE
YOU FLYING?

/
I JUST TYPED
import ontigrauity
THAT'S 1T? /

... T ALSO SAMPLED
EVERYHING IN THE
MEDICINE CABINET
FOR COMPARISON.
[

BUT I THINK THIS

1S THE PYTHON.

Hello World

Let us write “Hello world” in python:
print "Hello world"
You can run python scripts from the shell:

$ cat hello.py
#!/usr/bin/env python
print "Hello world"

$./hello.py

Hello world

(That #! line is standard unix magic for, “‘use python to run
this script”)
Or interactively:

$ python
>>> print "Hello world"
Hello world

Interpreted Languages Intro to Python Libraries Beyond Libraries

Interactive Usage

These days we are all spoilt by the unix shells. We expect:
@ To be able to use 1]+—— to save typing

@ To be able to use TAB to complete command and file
names

@ That our history be saved between sessions
This is all available in python. Two solutions:
@ Use ipython (http://ipython.scipy.org/moin/)

@ Put cunning and cryptic commands in your python
startup file ($PYTHONSTARTUP)

http://ipython.scipy.org/moin/

Primitive types

@ None

@ bool (True, False)

@ int

@ long (arbitrary precision)
@ float

e
Lists and Tuples

Python supports two separate-but-almost-equal list types:

@ list
>>> 1i = [100, 101, 102, 103]
>>> 1i[0]
100
>>> x = 1i[1:3]
>>> x
[101, 102] # not [100, 101, 102]
>>> 1i[-1] = 666
>>> 1i
[100, 101, 102, 666]
@ tuple
>>> tp = (100, 101, 102, 103)
>>> tp[0]
100
>>> x = tp[1:3]
>>> x
(101, 102)

>>> tp[-2] = 666
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: ’tuple’ object does not support item assignment

@ There is also set
A sorted list with each element appearing only once.

Strings
Python strings can be delimited with ", >, """ or *»
>>> s = "Hello world"
>>> s2 = ’Goodbye, sweet life’
>>> 83 = """I really like

to split greetings over multiple lines"""

I recommend not randomly switching between " and ?
strings (as it makes it hard to find them in your editor). I
personally follow the C convention: "Hello world" but ’H’.
Strings have several useful methods:

>>> print s.upper ()
HELLO WORLD

>>> s.find(’w?)

6

>>> print s[s.find(’w’):]
world

>>> s.split ()
[?Hello’, ’world?’]

You can't interpolate variable ("$a $b $c"), but you can say

5>> a, b, ¢ = "A", "B", "G
>>> print "%s %s %s" % (a, b, c)
A BC

Dictionaries
>>> di = {"1lsb": "Luis", "suzanne.aigrain": "Suzanne", "rhl": "Robert"}
>>> print di[’rhl’]
Robert
>>> print di.keys(), di.values()
[’1sb’, >rhl’, ’suzanne.aigrain’] [’Luis’, ’Robert’, ’Jim’]
>>> di = dict(president = "Obama")
>>> di["prime minister"] = "Berlusconi"
N.b. python supports garbage collection; when we said di =
dict(president = "Obama") the memory for our email

dictionary was returned to the system.

Interpreted Languages Intro to Python Libraries Beyond Libraries

Loading source files

If you have a file foo.py, you can make it visible from
python with import foo. If you modify foo.py and repeat
the import, nothing happens. To see your changes, you
have to say reload(foo)

Python searches for foo.py by searching the directories in
$PYTHONPATH (a : separated list) in order.

When you first import a file it's compiled to a .pyc file
(foo.pyc). You'll probably want to tell your source code
manager (e.g. hg or svn) to ignore .pyc files, e.g. by adding
*.pyc to your .hgignore file.

If you move
foo.py to a directory later in $PYTHONPATH, but leave
foo.pyc behind, python will happily import the .pyc file for
you; this may not be what you intended.

Interpreted Languages Intro to Python Libraries Beyond Libraries

Control structures

Python has the standard control structures: if-elif-else,

for, while and logicals and, or, not ==, <, ...
if x == 1:
print "One"
elif x == 2 or x == 3:

print "Two or Three"
else:
print "Something else"

The block structure is defined by whitespace. This seems
weird, but you soon get used to it. I believe that it was a
very bad design decision, but it’s not going to change.
Because there isn’t any information about a program’s
block structure except the white space, you have to be very
careful.

Another issue is mixing tabs and spaces; it's probably better
to instruct your editor to insert spaces even when you hit
the tab key to avoid the problem.

Changing program logic

In C I can write
if (x == 0) {
printf ("One\n");
} else {
printf ("Not one\n");

If I need to change the indentation level I can modify this
to
if (y == 10) {
if (x == 0) {
printf ("One\n");
} else {
printf ("Not omne\n'");

}
and get my editor to reindent to make it look pretty.
In python, things aren’t so nice.

if y == 10:

if x == 1:
print "One"

else:

print "Not one"
I cannot tell whether the else belongs to the x or y test. My
only hope is to rigidly reindent the block (use ~C> in emacs)

for and while loops

for r in ("Arrow", "Birdland", "Matinee"):
print r
n = 10

for i in range(mn):
for j in range(i, mn):
print i, j

(note that range(n) counts from 0 to n-1, not up to n).

i=0
while True:
i += 10
if i == 100:

break
print i

continue iS also available. But goto isn’t.

Functions

def myRange (n):
"""Return (0...n)"""
i, out = 0, []
while i < n:
out .append (i)
i +=1

return out

for i in myRange (10):
print i

Simple variables (int, float) are passed by value; everything
else is passed by reference.

This mans that if you modify a list or dictionary passed to
a function it'll be modified in the calling routine too; you
may need to make a copy:

1i = 1i[:]
di = di.copy()

It'd be nice if 1ist also supported copy; you can always use
import copy; copy.copy(XXX)

Default arguments

You can also specify default values for arguments (as well
as variable numbers of arguments):

def myRange(n, end=None, dn=1):
"""Return a list of integers

Details
win
if end == None:
i, end = 0, n
else:
i =n
out = []

while i < end:
out .append (i)
i += dn

return out

>>> myRange (3)

0, 1,
>>> myRange (2, 4)
(2, 3)

>>> myRange (2, 10, 2)
(2, 4, 6, 8)
>>> myRange (10, dn=2)
0, 2, 4, 6,

B
Exceptions

Don’'t do this at home:

>>> myRange (0, 10, -2)
the program will appear to hang until you hit ~¢ (or run out
of memory — I should have used yield)

>>> ~C~C

8>> import pdb; pdb.pm()

0

> <stdin>(13) myRange ()
(Pdb) p i

-5184308

(Pdb)

We're counting down to —co
def myRange(n, end=None, dn=1):

if dn <= 0:
raise RuntimeError ("Increment is negative: %g" % (dn))

Catching exceptions

An exception need not be fatal:

try:
myRange (0, 10, -2)
except RuntimeError, e:

print "Caught exception:", e

There are also more complicated and powerful forms of this
try except pattern.

Classes

Python is an Object Orientated language. In people.py I
wrote:

class Person(object):

"""Describe a person"""

def __init__(self, email=None, surname=None):
self.email = email
self.surname = surname

Note that self plays the part of C++'s this, but you have to
explicitly write it out. All member functions expect self as
their first argument. Let’s use our new class

>>> import people

>>> addressBook = {}

>>> addressBook["Luis"] = people.Person("lsb", "Barro")

>>> addressBook["Robert"] = people.Person(surname="Lupton")
>>> print addressBook["Luis"].email

1sb

Dynamic typing

Let's return to another old friend, max?!

def max(a, b):
if a > b:
return a
else:
return b

That's it.
>>> print max(1l, 2)
2

>>> print max("a", "b")

7b7

>>> print max(["a", "b"1l, ["a", "c"])
[7a’, ’c¢’]

>>> import people

>>> Luis = people.Person("lsb", "Barro")
>>> Robert = people.Person("rhl", "Lupton")
>>> print max(Luis, Robert)

(1sb, Barro)

The comparison is consistent-but-undefined. If we want to
sort by the email address:

def __cmp__(self, rhs):
return cmp(self.email, rhs.email)

and now max woOrks as expected.

lactually, max is a builtin, but builtin names are not protected

Libraries

The Official Library
http://docs.python.org/library/index.html J

Python has many libraries. I'll skim the surface of two:
@ matplotlib
Plotting
@ numpy
Array operations

Enthought Scientific Python
http://www.enthought.com/products/epd.php J

http://docs.python.org/library/index.html
http://www.enthought.com/products/epd.php

Interpreted Languages Intro to Python Libraries Beyond Libraries

Plotting, matplotlib

There are a number of plotting packages available for
python; I'll concentrate on matplotlib.

The package is available from Enthought or

http://matplotlib.sourceforge.net/index.html

Defaults are set in $HOME /.matplotlibrc, e.g.

backend . TkAgg
Using TkAgg (which is probably a good idea) requires that
your version of python was built with tkinter support.
matplotlib can use other backends (e.g. WXAgg) if you have
the proper package installed (e.g. wxPython)

http://matplotlib.sourceforge.net/index.html

Interpreted Languages Intro to Python Libraries Beyond Libraries

Plotting using matplotlib

There are two ways to use matplotlib
@ Interactive:
@ uses matplotlib.pyplot package
e good for quickly making single plots, hiding all the
object-oriented aspects.
@ supposedly looks very similar to matlab

@ Object-oriented (more pythonic):

@ Renderers which provide an abstract interface to drawing
primitives (e.g. draw_path)

e Backend objects which take care of how to actually draw
the object (e.g. TkAgg to use Tk)

@ A FigureCanvas to draw on

@ An Artist that knows how to use renderers to draw on

canvases.

If you need fine control over your plots you need to know
the classes and their methods

Interactive plotting with matplotlib

import matplotlib
import matplotlib.pyplot as plt
import numpy

make data
X = numpy.linspace (0.0, 9.0, 19)

model = numpy.sin(x)
y = numpy.random.normal(loc=model, scale=0.2)
Z = X*%2

yerr = numpy.abs(y - model)

plot the data

plt.plot(x, y, "b.", label="Ny data points")

plt.plot(x, model, "r-", label="Best-fit line")
plt.errorbar(x, y, xerr=None, yerr=yerr, fmt=None, color=’b’)

Labels
plt.xlabel("x")
plt.ylabel("y")
plt.title("title")

add a legend using the labels you gave to plot ()
fontProps = dict(size = "small'")
plt.legend(loc="upper left'", prop=fontProps, ncol=1)

Show the figure (should pop up a new window)
plt.show ()

Save the plot to a file
plt.savefig("figures/plot_sin.pdf", format='"pdf'")

Clear the figure (so we can make a new one)
plt.clf ()

plot _sin.pdf

title

* « My data points

Best-fit line

1.0 b

0.5F J

—0.5f 1

Format characters

The format string is of the form cM (ColourMarker)

b Dblue - solid line . point

g dreen -- dashed line , pixel

r red : dotted line o Circle

c cyan -. dot-dash line | v triangle down
m magenta © triangle up

y < triangle left
k black > triangle_right
w white

There are more colours, but it's better to use the color
keyword. For markers, it's really better to use the marker
and linestyle keywords

OO plotting with matplotlib

The matplotlib command to select the third sub-window
out of a 2x2 set is

figure.add_subplot (2, 2, 3)
so I could say

figure.add_subplot (2, 2, 1)
make a plot
figure.add_subplot (2, 2, 2)
make another plot
figure.add_subplot (2, 2, 3)
keep plotting
figure.add_subplot (2, 2, 4)
plot plot plot

But I'm lazy and I don’t like duplicating 2, 2
Instead, I'll use a generator

def makeSubplots (figure, nx=2, ny=2):
"""Return a generator of a set of subplots
for window in range (nx*mny):
yield figure.add_subplot(nx, ny, window + 1) # 1-indexed

subplots = makeSubplots (fig)
Initialize
axes = subplots.next ()

Panel I. Histogram

#make the figure (Artist object) that will draw the plot
fig = matplotlib.figure.Figure ()

#make the canvas where the figure will be drawn
from matplotlib.backends.backend_pdf import FigureCanvasPdf as FigCanvas
canvas = FigCanvas (fig)

def makeSubplots (figure, nx=2, ny=2):
"""Return a generator of a set of subplots"""
for window in range (nx*mny):
yield figure.add_subplot(nx, ny, window + 1) # 1-indexed

subplots = makeSubplots (fig)
Initialize
axes = subplots.next ()

#make a histogram of residuals, returns bin delimiters and number/bin
myhist = axes.hist(yerr, bins=5)
axes.set_title("y residuals")

y residuals

= N W s U O

So

.000.050.100.150.200.250.300.35

Panel II: Log-linear

Initialize and make a log plot
axes = subplots.next ()
axes.semilogy(x, z, "g-.")

Move the axis label to the right hand size
axes.yaxis.set_label_position("right")
axes.set_ylabel(r"latex: $x~2+\sqrt{\sigmal}$", size="small")

can work in pixel, figure, or axes or plotting coordinates
in this case put the text in 60%, 10% of the axes
axes.text (0.6, 0.1, "lower right", transform=axes.transAxes)

y residuals

10°

= N W s U O

So

10*

10°

-1 PR SR
000.050.100.150.200.250.300.3§'O 012 3 4 5 6 7

lower right

8

latex: z* +vao

B
Panel III: Scatter Plot

Initialize and calculate points

axes = subplots.next ()
xs = numpy.random.random(100)
ys = numpy.random.random (100)*2

zs numpy .sqrt (xs**2 + ys**2/4.0)

Make plot
sc = aXxes.scatter(xs, ys, c=zs)
fig.colorbar (sc)

Interpreted Languages

2.5

2.0p
1.5f
1.0r

0.5
0.0
-0.5

Intro to Python

Libraries

y residuals

0.20.00.20.40.60.81.01.2

1.20
1.05
0.90
0.75
0.60
0.45
0.30
0.15

10?

10"

10°

lower right

-1 S S SR
(9.000.050.100.150.200.250.300.351O 01 2 3 45 6 7 8 9

+Vo

latex: z?

Beyond Libraries

Panel IV: Contours

mlab has lots of matlab-like functions; we’ll just fake some data
from matplotlib.mlab import bivariate_normal

Initialize and calculate data

axes = subplots.next()

axis = numpy.linspace(-2.0, 2.0, 100)

X, Y = numpy.meshgrid(axis, axis)

Z = bivariate_normal(X, Y, 0.7, 1.0, 0.0, 0.0) # from matplotlib.mlab

Make a contour plot

CS = axes.contour(X,Y,Z)

#put labels on the contous
axes.clabel(CS, inline=1, fontsize=8)

Change the ticklabel size
try:
axes.tick_params (axis="x", labelsize="small") # new in 1.0
except AttributeError:
for 1 in axes.xaxis.get_ticklabels() + axes.yaxis.get_ticklabels():
l.set_size("x-small")

Save the plot to a file
fig.savefig("figures/plot_multi.pdf")

Interpreted Languages Intro to Python Libraries Beyond Libraries

plot multi.pdf

residuals
. ‘ 10? —
10' b - 1
. +
s
N x
100 12
: lower right

-1 PR R R
(9.000.050.100.150.200.250.300.351O 01 2 3 45 6 7 8 9

2.5 2.0
120 15| |
2.0F o ; :
o@%o%g 0% & 105 10}]
150 o %8 oo (1090 ol |
0 PoF 00 e ’
I o we | |{0.75 | |
1.0 % 60 0.0
Do o Goo 8, 0.60 .| |
0.5 ® ° o ° | -0.5
: ® ° 0.45
¢ ®_ s%0 B0 -1.0f 1
ool o0 1 fo30 | |
-05 015 50

—0.20‘.0 O‘.Z O‘,4 O‘,G O‘,8]_‘,O 1.2 '—2.0—‘1.5—‘1.0—0.5 0‘.0 0.5 1‘.0 115 2.0

Array operations, numpy

While the array library, numpy, is not part of the python
standard library it is widely available.
NumPy home (or get it from Enthought)

http://numpy.scipy.org

We used a few pieces of numpy in the matplotlib examples:

import numpy

x = numpy.linspace (0.0, 9.0, 19)
model = numpy.sin(x)

yerr = numpy.abs(y - model)
zs = numpy.sqrt(xsxx2 + ysx%x2/4.0)

numpy .random.seed (666)

xs = numpy.random.random(100)
y = numpy.random.normal(loc=model, scale=0.2)
axis numpy .linspace (-2.0, 2.0, 100)

X, Y numpy .meshgrid (axis, axis)

http://numpy.scipy.org

numpy Arrays

>>> x = numpy.linspace(0.0, 5.0, 11); print x
[0. 0.5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 1]

We could have used arange (analogous to python's range):

>>> print numpy arange(o 0, 5.1, 0.5)
[0. 0.5 1. 2. 2.5 3. 3.5 4. 4.5 5. 1]

There's also

>>> print numpy.zeros(4), numpy.ones(4), numpy.empty(4, dtype=’i’)
[o. o. o. 0.1 [1. 1. 1. 1.1 [9 0 18402543 1]

>>> x = numpy.arange(5); print numpy.multiply.outer(x, x)
[LOoO 0 0 0 o]

[0 1 2 3 4]

[0 2 4 6 8]

[0 3 6 9 12]

[0 4 8 12 16]1]

numpy Mathematical functions

>>> x = numpy.arange (5)

>>> y = numpy.sin(x); print y

[0. 0.84147098 0.90929743 0.14112001 -0.7568025 1
There are lots of other mathematical builtins (sin, cos, tan,
arcsin, arctan2, abs, sqrt, ...)

>>> print zip(x, y)
[(0, 0.0), (1, 0.8414709848078965), (2, 0.90929742682568171),

(3, 0.14112000805986721), (4, -0.7568024953079282)]
>>> print "\n".join(["%g %6.3f" % (t, s) for t, s in zip(x, y)1)

0 0.000
1 0.841
2 0.909
3 0.141

4 -0.757
(OK, so that's a python, not numpy, trick)

numpy Random Numbers

>>> numpy.random.seed (666)

>>> numpy.random.random(10)

array ([0.70043712, 0.84418664, 0.67651434, 0.72785806, 0.95145796,
0.0127032 , 0.4135877 , 0.04881279, 0.09992856, 0.50806631]1)

(n.b. 1didn’t say print, so I got the repr not the str value
of the result)

>>> print numpy.random.normal(loc=numpy.arange(5), scale=0.2)
[-0.2177586 0.88484585 1.66341985 3.04583705 3.64867496]
>>> print numpy.random.normal (numpy.arange(5), 0.2)

[0.16892652 1.05544397 2.17058031 3.03891992 4.26212754]

The two calls are identical, but the random numbers are (of
course) different.

numpy in n-D

>>> axis = nump
>>> X, Y = nump
>>> print X
[[-2. -1. 0. 1. 2.]
[-2. -1. 0. 1. 2.]
[-2. -1. 0. 1. 2.]
[-2. -1. 0. 1. 2.]
[-2. -1. 0. 1. 2.]]
>>> print Y
[[-2. -2. -2. -2. -2.]
[-1. -1. -1. -1. -1.]
[0o. 0. O 0. 0.]
[1. 1. 1 1. 1.1
[2. 2. 2 2. 2.]11]
>>> print numpy.cos(X)*numpy.
[[0.37840125 -0.4912955
[0.35017549 -0.45464871
[-0. 0.
[-0.35017549 0.45464871
[-0.37840125 0.4912955
>>> print numpy
[[-0.00000000+0. j
2.27324357+0.7386216135 2.
[-0.00000000+0.j
2.10367746+0.68352624j
[0.00000000+0.j
0.00000000-0.j

y.linspace(-2.0, 2.0, 5)
y.meshgrid(axis, axis)

-0.
-0.
0.
0.
0.

sin(Y)

90929743 -0.4912955

84147098 -0.45464871
0.

84147098 0.45464871

90929743 0.4912955

fft . fft (X)*numpy.sin(Y)
j 2.27324357-3.12885135j

27324357+3.12885135j1]

2.10367746-2.89546363j

2.

0.
0.00000000-0.j]

10367746+2.89546363j]
00000000+0.j

0.
0.
-0.
-0.
-0.

2.
2.

-0.

37840125]
35017549]

1
35017549]
3784012511

27324357-0.73862161
10367746-0.68352624

00000000+0. j

numpy extended indexing

You aren't restricted to using scalars as array indexes:

>>> x = numpy.arange(-4, 5); print x
[-4 -3 -2 -1 4

>>> 1 = x*%2 > 4

>>> print i

[True True False False False False False True Truel
>>> print x[il

[-4 -3 3 4]

>>> x[i] = 10 + numpy.abs(x[il)
>>> print x
[14 13 -2 -1 0 1 2 13 14]

>>> I = numpy.array([2, 71)
>>> print x[I]
[-2 13]

numpy Linear Algebra

numpy .arange(n); M = numpy.zeros(n*n); M.resize(m, n)
i + 1; print M

>>> n = 3; =

>>> MI(i, 1)] =
(L 1. 0. 0.1
[0. 2. 0.
[0. O. 3.11

>>> numpy.linalg.inv (M)

—

array ([[1. , 0. , 0. 1,

[0. , 0.5 , 0. 1,

[0. , 0. , 0.33333333]11)
>>> M = numpy.matrix (M)
>>> U, s, V = numpy.linalg.svd (M)
>>> Uxnumpy.diag(s)*V # should ==
matrix ([[1., O0., 0.1,

[o., 2., 0.1,

[0., 0., 3.1
Traps await the unwary:

>>> M = numpy.zeros(n*n); M.resize(n, n); M[(i,i)] = i + 1
>>> U, s, V = numpy.linalg.svd (M)
>>> Uxnumpy.diag(s)*V
array ([[0., O0., 0.1,
[o., 2., 0.1,
[o., 0., 0.1

Uh oh; that's an element-by-element product. An array is
not a matrix; you have to say
>>> numpy.dot (U, numpy.dot (numpy.diag(s), V))

Other numpy capabilities

numpy has lots of libraries:
@ FFTs
@ Linear algebra
@ Statistics
@ etc.

I used the statistics package in analyzing the course
questionnaire:
cov = numpy.cov(data, rowvar=False)
for i in range(len(cov[0])):
print "%6.3f" numpy.mean(datal:, i]), \
"M join(["%6.3f" % x for x in cov[il]])
The scipy package adds many more:
@ N-dimensional image convolution
@ Interpolation
@ Sparse linear algebra (e.g. 3M x 5k least-squares
problems)
@ Optimization
@ etc.

S e
Embedding C/C++/Fortran in python

One extremely powerful technique is to wrap your own code
in python, a topic that we’ll cover later in the course. To
whet your appetite, here's some analysis code that I wrote
last week:

mosaic.py

smoothingKernel = AnalyticKernel(ksize, ksize,
GaussianFunction2D(alpha, alpha))

for £ in filters:
imglist = vectorMaskedImageF ()

for run, camCol, (fieldO, fieldl) in inputs:
camColImgList = vectorMaskedImageF ()

fields = []
for field in range(field0, fieldl + 1):

exposure = getExposure(run, camCol, field, f)

if subtractBackground:
bkgd = makeBackground (mim, BackgroundControl(nx, ny))

im = exposure.getMaskedImage () .getImage ()

im -= bkgd.getImageF ()
del im
cmimg = maskedImageFactory (exposure.width(),exposure.height())

convolve (cmimg, exposure.getMaskedImage(), smoothingKernel)
exposure .setMaskedImage (cmimg)

img = maskedImageFactory (exposure.getDimensions())
warpedExposure = makeExposure(img, wcsO)
warpExposure (warpedExposure , exposure, warpingKermnel)

Every operation in red is written in C++.

	Interpreted Languages
	Intro to Python
	Libraries
	Beyond Libraries

