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Abstract | review the framework of Bayesian model comparison as apb cos-
mological model building. | then discuss some recent dgrakents in the evaluation
of the Bayesian evidence, the central quantity for Bayesiadel comparison, and
present applications to inflationary model building anddaostraining the curvature
and minimum size of the Universe. | conclude by discussingtwithink are some
of the open challenges in the field.

1 Introduction

Many problems in cosmology and astrophysics are about thepichether the avail-
able data require the inclusion of a new parameter in a lmesetodel. Examples
of such problems include identifying astronomical souricean image; deciding
whether the Universe is flat or not, or whether the dark energyation of state
parameter changes with time; detecting an exo-planetioghdtdistant star; identi-
fying a line in a spectrum, and many others.

The classical approach to this kind of questions takes tha fuf hypothesis
testing: a null hypothesis is set up (where the effect onedkihg for is supposed
absent) and a test is performed to reject it, at a certairifgignce level. This in-
volves comparing the observed value of a test statistiggdayly, the x2) with the
value it would assumé the null hypothesis were trudhe shortcomings of this
methodology are that (i) it does not return a probabilitytfa hypothesis (contrary
to a common misunderstanding among astrophysicists) gritigannot confirm a
hypothesis, merely fail to reject it (see [1, 2, 3] for a moegailed discussion).

Some of those problems are resolved if one takes a Bayesimokiand adopts
the framework of Bayesian model comparison. When thereareral competing
theoretical models, Bayesian model comparison providesadl way of evaluating
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their relative probabilities in light of the data and anygprinformation available.
The “best” model is then the one which strikes an optimumrizdetween quality
of fit and predictivity. In fact, it is obvious that a model Wwimore free parameters
will always fit the data better (or at least as good as) a modhlless parameters.
However, more free parameters also mean a more “complexéhfagrecise defi-
nition of “model complexity” can be found in [4]). Such an addcomplexity ought
to be avoided whenever a simpler model provides an adeqeatiption of the
observations. This guiding principle of simplicity and aomy of an explanation
is known asOccam'’s razor— the simplest theory compatible with the available
evidence ought to be preferred.

An important feature is that an alternative model must beifipd against which
the comparison is made. In contrast with frequentist gossief—fit tests, Bayesian
model comparison maintains that it is pointless to rejetiemty unless an alterna-
tive explanation is available that fits the observed facteebdn other words, unless
the observations are totally impossible within a model,ifigdhat the data are im-
probable given a theory does not say anything about the pilithaf the theory
itself unless we can compare it with an alternatieconsequence of this is that the
probability of a theory that makes a correct prediction camease if the prediction
is confirmed by observations, provided competitor theadi@sot make the same
prediction.

2 Bayesian model comparison

2.1 Shaving theorieswith Occam’s razor

Bayesian inference is often the statistical framework aficé in cosmology (see
e.g.[5, 3]), and, increasingly so, in astroparticle physihe posterior pdb(©|d,.#)
for then-dimensional parameters vect®rof a model.# is given by

p(d[®,.#)p(O|.#)
p(d|.#) '

Here,p(©|.#) is the prior,p(d|O©,.#) the likelihood andp(d|.# ') the model like-
lihood, or marginal likelihood (usually called “Bayesiavidence” by physicists),
the central quantity for Bayesian model comparison.

In the context of model comparison it is appropriate to thifika model as a
specification of a set of parameté@®sand of their prior distribution,p(©|.#). Itis
the number of free parameteaardtheir prior range that control the strength of the
Occam’s razor effect in Bayesian model comparison: motialstave many param-
eters that can take on a wide range of values but that are ededeén the light of
the data are penalized for their unwarranted complexitgr&tore the prior choice
ought to reflect the available parameter space under the inedeindependently
of experimental constraints we might already be awareTbfs is because we are

p(@ld,.#) = (1)
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trying to assess the economy (or simplicity) of the modelfits@nd hence the prior
should be based on theoretical or physical constraintsemtidel under considera-
tion. Often these will take the form of a range of values thatieemed “intuitively”
plausible, or “natural”. Thus the prior specification isénént in the model compar-
ison approach.

2.2 The Bayesian evidence

The evaluation of a model’s performance in the light of théada based on the
Bayesian evidencéhe normalization integral on the right—hand-side of Bafee-
orem, Eq. (1):

p(d.#) = [ pdl®, .4 )p(@L.4)de. @

Thus the Bayesian evidence is the average of the likelihaatuthe prior for a
specific model choice. From the evidence, the model posterabability given the
data is obtained by using Bayes’ Theorem to invert the ortleonditioning:

p(-#|d) O p(-2)p(d|.#), 3)

wherep(.#) is the prior probability assigned to the model itself. Usp#his is
taken to be non—committal and equal 1A\, if one consider&y, different models.
When comparing two models#g versus.#1, one is interested in the ratio of the
posterior probabilities, guosterior oddsgiven by

P(-#old) _ g P(-#0) @)
p(#1|d) p(.71)
and theBayes factor B is the ratio of the models’ evidences:
p(d|-#o)
Bo1= ———~ (Bayes factor. 5
01 p(d[.72) (Bay ). (5)

A value By > (<) 1 represents an increase (decrease) of the support in fafour
model 0 versus model 1 given the observed data. From Eq. {dljatvs that the
Bayes factor gives the factor by which the relative odds betwthe two models
have changed after the arrival of the data, regardless of whahought of the
relative plausibility of the models before the data, giventlbe ratio of the prior
models’ probabilities.

Bayes factors are usually interpreted against the Jeffryade [6] for the
strength of evidence, given in Table 1. This is an empincadlibrated scale, with
thresholds at values of the odds of about 3: 1, 12 : 1 and 15@piesenting weak,
moderate and strong evidence, respectively.

Bayesian model comparisdioes noteplace the parameter inference step (which
is performed within each of the models separately). Instesmiel comparisoex-
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[InBo1| Odds Probability Strength of evidence

<10 <3:1 <0750 Inconclusive

1.0 ~3:1 0750 Weak evidence

25 ~12:1 Q923 Moderate evidence
5.0 ~150:1 0993 Strong evidence

Table 1 Empirical scale for evaluating the strength of evidence wbemparing two models,
Mo versus./, (so—called “Jeffreys’ scale”). Threshold values are eroally set, and they occur
for values of the logarithm of the Bayes factor [dfiBp;| = 1.0, 2.5 and 5.0. The right-most
column gives our convention for denoting the different lsvaf evidence above these thresholds.
The probability column refers to the posterior probabibfythe favoured model, assuming non—
committal priors on the two competing models, i.e(.#y) = p(.#1) = 1/2 and that the two
models exhaust the model spapéZy|d) + p(.#1|d) = 1.

tendsthe assessment of hypotheses in the light of the availaliéetddhe space of
theoretical models, as evident from Eq. (4).

3 Recent developments

3.1 Numerical evaluation of the evidence

The computation of the Bayesian evidence, Eq. (2), is in ggiaeumerically chal-
lenging task, as it involves a multi-dimensional integratover the whole of pa-
rameter space. Fortunately, several methods are now bleikach with its own
strengths and domains of applicability. Some of them haem lieeveloped by as-
tronomers/cosmologists and are rapidly finding applicetio other domains.

1. The numerical method of choice until recently has beemtbdynamic inte-
gration, whose computational cost can however be fairlgdain typical cos-
mological applications [7, 8, 9], thermodynamic integvatican require up to
~ 10’ likelihood evaluations, two orders of magnitude more thaBNWC—based
parameter estimation. Recently, population Monte Carprthms have been
used succesfully to compute the evidence [10].

2. Skilling [11, 12] has put forward an elegant algorithmedl‘nested sampling”,
which has been implemented in the cosmological context By14, 15, 16, 17]
(for a theoretical discussion of the algorithmic propestgee [18]). It calculates
the evidence by transforming the multi-dimensional evigeimtegral of Eq. (2)
into a one—dimensional integral that is easy to evaluateemigatly. This is ac-
complished by defining the prior voluméas &X = p(©)d"®, so that

X)= [, pexe. ©)



Recent advances in cosmological Bayesian model comparison 5

where.Z(0) = p(d|©) is the likelihood function and the integral extends over
the region(s) of parameter space contained within theiksdifiood contour
Z(0) = A (in this section we drop the explicit conditioning on mod#l, as
this is understood). Assuming th&f(X), i.e. the inverse of (6), is a monoton-
ically decreasing function ok (which is trivially satisfied for most posteriors),
the evidence integral (2) can then be written as

7 =p(d) = /:z(X)dx, 7)

Thus, if one can evaluate the likelihood§ = .Z(X;), whereX; is a sequence
of decreasing values,

O< X< - < X< Xy < Xp=1, (8)

as shown schematically in Fig. 1, the evidence can be appesgd numerically
using standard quadrature methods as a weighted sum

M
¥ = I;ﬁ Wi. 9

If one uses a simple trapezium rule, the weights are givem by% (Xi—1—Xi4+1)-
An example of a posterior in two dimensions and its assagifitection.# (X)
is shown in Fig. 1.

Z

X3 Xz X1

@ o

Fig. 1 Cartoon illustrating (a) the likelihood of a two-dimensabrproblem; and (b) the trans-
formed #(X) function where the prior volumeX; are associated with each likelihoo#;.
From [17].

This technique allows to reduce the computational burdeabtiut~ 10° like-
lihood evaluations. Recently, the development of what Ikedd'multi-modal
nested sampling” has allowed to increase significantly tffieiency of the
method [16, 17], reducing the number of likelihood evaloasi by another or-
der of magnitude.
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3. Useful approximations to the Bayes factor, Eq. (5), a@lable for situations
in which the models being compared arestedinto each other, i.e. the more
complex model. 1) reduces to the original model/4p) for specific values of
the new parameters. This is a fairly common scenario in ctmyypwhere one
wishes to evaluate whether the inclusion of the new parasme&tesupported by
the data. For example, we might want to assess whether weiseadvature
contributions to the initial conditions for cosmologica&rpurbations, or whether
a curvature term in Einstein’s equation is needed, or whedheon—scale in-
variant distribution of the primordial fluctuation is prefed. Writing for the ex-
tended model paramete®&= (a,3), where the simpler model/, is obtained
by settingB = 0, and assuming further that the prior is separable (whicisis
ally the case in cosmology), i.e. that

p(a,Bl.#1) = p(B|-#1)p(a|.#0), (10)
the Bayes factor can be written in all generality as
P(Bld, 1)
Bor= ———— . 11
TN ARNE -

This expression is known as the Savage—Dickey density (8DR, see [19,
20]). The numerator is simply the marginal posterior unéher tnore complex
model evaluated at the simpler model’'s parameter valudewine denominator
is the prior density of the more complex model evaluated@asdme point. This
technique is particularly useful when testing for one epmeameter at the time,
because then the marginal postepé|d,.#1) is a 1-dimensional function and
normalizing it to unity probability content only required-adimensional integral,
which is simple to do using for example the trapezoidal rule.

4. An instructive approximation to the Bayesian evidence lsa obtained when
the likelihood function is unimodal and approximately Gsian in the parame-
ters [21]. Expanding the likelihood around its peak to selcorder one obtains
the Laplace approximation

1
PO, #) ~ Lmaxexp _E(O_GML)tL(O_OML) ; (12)

where @y is the maximum-likelihood pointZnax the maximum likelihood
value and_ the likelihood Fisher matrix (which is the inverse of the abance
matrix for the parameters). Assuming as a prior a multinér@aussian dis-
tribution with zero mean and Fisher information matfxone obtains for the
evidence, Eq. (2)

E -1/2 1 .
] Ow'Low. —O'FO)], (13)

p(d[.#) = «Zmaxm exp —é(
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where the posterior Fisher matrixks= L + P and the posterior mean is given
by@ = FflL@ML.

From Eq. (13) we can deduce a few qualitatively relevant erigs of the evi-
dence. First, the quality of fit of the model is expresseddysy, the bestfit likeli-
hood. Thus a model which fits the data better will be favourethis term. The term
involving the determinants d® andF is a volume factor, encoding the Occam’s ra-
zor effect. A§P| < |F|, it penalizes models with a large volume of wasted parameter
space, i.e. those for which the parameter space vo|&imé/2 which survives after
arrival of the data is much smaller than the initially avbi&aparameter space under
the model prior|P|~%/2. Finally, the exponential term suppresses the likelihabd o
models for which the parameters values which maximise keditiood,0Oy_, differ
appreciably from the expectation value under the poste@io herefore when we
consider a model with an increased number of parameters evihatts evidence
will be larger only if the quality—of—fit increases enoughdffiset the penalizing
effect of the Occam’s factor

On the other hand, it is important to notice that the Bayesiadence doesot
penalize models with parameters that are unconstraindubydta. It is easy to see
that unmeasured parameters (i.e., parameters whoseipo&erqual to the prior)
do not contribute to the evidence integral, and hence manheparison does not act
against them, awaiting better data.

3.2 Principled application of model selection

I'd like to discuss the inflationary model comparison catraat in Ref. [22] as an
example of the application of the above formalism to the fmolof deciding which
theoretical model is the best description of the availabkeovations. Although the
technical details are fairly involved, the underlying idwe be sketched as follows.

The term “inflation” describes a period of exponential exgian of the Universe
in the very first instants of its life, some 1% seconds after the Big Bang, during
which the size of the Universe increased by at least 25 omfersagnitude. This
huge and extremely fast expansion is required to explaimliserved isotropy of
the cosmic microwave background on large scales. It is\asdi¢hat inflation was
powered by one or more “scalar fields”. The behaviour of theasdield during
inflation is determined by the shape of its potential, whih real-valued function
V(¢) (whereg denotes the value of the scalar field). The detailed shapg of
controls the duration of inflation, but also the spatialritisition of inhomogeneities
(perturbations) in the distribution of matter and radiatiehich emerge from infla-
tion. Itis from those perturbations that galaxies and elufgirm out of gravitational
collapse. Hence the shape of the scalar field can be corefrbinobservations of
the large scale structures of the Universe and of the CMBrapigs.

Theories of physics beyond the Standard Model motivateaicefunctional
forms ofV (@), which however typically have a number of free paramet¢tsThe
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Fig. 2 Results of Bayesian model comparison between 9 inflatiomangels (vertical axis), sub-
divided in two categories (SFI models and LFI models), froef.[R2]. Errorbars reflect the 68%
uncertainty on the value of the Bayes factor from the nuraégealuation.

fundamental model selection question is to use cosmolbgliservations to dis-
criminate between alternative models Y6fp) (and hence alternative fundamental
theories). The major obstacle to this programme is that Wl if anything at all
is knowna priori about the free paramete¥sdescribing the inflationary potential.
What is worse, such parameters can assume values across seglers of magni-
tude, according to the theory. Hence the Occam'’s razor teffieBayesian model
comparison can vary in a very significant way depending orptier choices for
W, Furthermore, a non-linear reparameterization of the lpral{which leaves the
physics invariant) does in general change the Occam’s faztor, and hence the
model comparison result.

In Ref. [22] a first attempt was made to tackle inflationary elelection from
a principled point of view. The main result of the analysish®wn in Fig. 2, which
presents the Bayes factors between models (suitably nizedal.r.t. a reference
model, here the so-called LFinodel). Two classes of models @K @) have been
considered, namely so-called Small Field Inflation (SFijeds and Large Field In-
flation (LFI) models. The two classes of model differ in thegmaeterized form of
V(g9), and have different sets of parameters, differing in direradity, as well.
Within each class of models, sub-classes are defined (d&hgtesubscripts in
Fig. 2) based on theoretical considerations, e.g. by fixomges of the parameters
to certain values. The priors on the models’ parameters bega chosen based on
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theoretical considerations of possible values achievabtier each class of mod-
els. Typical priors are uniform on the log of the parameteréflect indifference
w.r.t. the characteristic scale of the quantity), withiraage chosen as a reflection
of physical model building. The models’ priors are chosesuoh a way to lead to
non-committal priors for the two classes as a whole [(&FI) = p(LFIl) =1/2.

Fig. 2 shows that some models in the LFI class are fairly gfiodisfavoured by
the data (e.g., Liland LFL), while the model comparison is inconclusive in most
other cases. One finds that the posterior probability foStRlemodel class evaluates
to p(SFI|d) =~ 0.77. Therefore, the probability of the SFI class has increédisem
50% in the prior to about 77% in the posterior, signalling akpreference for this
type of models in the light of the data.

3.3 Bayesian model averaging

Bayesian model averaging represents the third level of 8ilageénference — incor-
porating model uncertainty (level 2) into parameter infees (level 1). The idea is
to average the posterior distribution for the parameteistefest over the space of
available models, with a weight given by the models’ postapirobability:

p(@ld) = ; p(@[d,.#)p(-.#|d). (14)

Of course, the aboveaveatsabout the choice of prior for model selection apply
equally to model averaging. An interesting consequencegtBian model averag-
ing is that in certain cases model averaged parameter eamtstcan be tighter than
non-model averaging ones, a consequence of the concentadtposterior proba-
bility onto simpler models due to the Occam’s razor effeceé Mstrate this with
the example of model averaged constraints on the curvaaremeter, a problem
recently investigated in Ref. [23] (for applications of Bajan model averaging to
the dark energy equation of state, see [24]; to the scalatrspindex, see [25] and
to weak lensing and Sunyaev-Zel'dovich effect data, sep.[26

In the Friedmann-Robertson-Walker (FRW) Universe theeeanly three dis-
crete possibilities for the underlying geometry, namely, ftaoen or closed. The
amount of curvature is usually characterized by the cureaparameteQy: if
Qk < 0 the geometry of spatial sections is spherical (i.e., thevétge is closed)
and the Universe has a finite size. If inst&2g > 0 the geometry is hyperbolic (i.e.,
the Universe is open), while fd2, = 0 spatial sections are flat. In both the two lat-
ter cases, the spatial extent of the Universe is infinite itsion the value of2, can
be derived in a geometrical way by observing the angularsibéended by cosmo-
logical features of known physical length, such as the a@psaks in the cosmic
microwave background (CMB) and the corresponding baryacaeistic oscillations
(BAO) in the distribution of large scale structures. Furthere, type la supernovae
(SNla) can be used as standard candles to determine thedsityinlistance as a
function of redshift. A combination of these three probes ba@en succesfully used
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to set very tight limits to the curvature parameter, whichas/ constrained at better
than the~ 102 level. For example, [27] find2, = —0.0057" 53585 at 68 % CL,
employing a combination of WMAP7, BAO [28] and SNIla data [28}pressive as
such limits are, themssumehe Universe to be curved, and carry out parameter in-
ference on the quantity describing curvature. A differeatmdological perspective
is required to go beyond that assumption: model-averagetslon the curvature of
the Universe, fully accounting for the uncertainty in sélegthe correct model for
the FRW Universe. Given current data, flat models are preddsy Bayesian model
selection from an Occam’s razor perspective, and therefast of the probability
mass becomes concentrated in models with vanishing spgatighture. However,
this “concentration of probability” effect remains quiteasgly dependent on the
prior chosen on the curvature parameter (which controlssttength of the Oc-
cam’s razor). A choice of prior based on requiring consisganith basic observa-
tional properties of the Universe (such as the age of thesblulgects, the so-called
“Astronomer’s prior”) leads to a posterior probability farflat Universe of 98.6%,
while a prior based on inflationary consideration (the “@atuve scale prior”) leads
to a much reduced probability of only about 46%. As in any gBagesian analysis,
examining the effect of a reasonable change of prior rengansmount.

The model averaged constraints &y for those two choices of priors are de-
picted in Fig. 3. Even the most conservative prior choiceegimodel-averaged
constraints on curvature that are a factor~oR better than non model-averaged
intervals. A more aggressive prior choice (the Astronomprior) leads to an im-
provement in the constraints d@y by a factor~ 100, giving| Qx| < 2 x 10~* at
99%. The same formalism can be used to derive model averagetraints on the
size of the Universe, which is robustly constrained to enmassNy > 251 Hubble
spheres, an improvement of a facted0 on previous constraints. Finally, the radius
of curvature of spatial section is found to Bg> 42 Gpc.

4 Open challenges and conclusions

| conclude by listing what | think are some of the open questiand outstanding
challenges in the application of Bayesian model selectiocosmological model
building.

e Is Bayesian model selection always applicablePhe Bayesian model com-
parison approach as applied to cosmological and partiglsiph problems has
been strongly criticized by some authors. E.g., GeorgeaHigtu [30] and Bob
Cousins [31] pointed out (in different contexts) that oftesufficient attention
is given to the selection of models and of priors, and that thight lead to
posterior model probabilities which are largely a functifione’s unjustified as-
sumptions. This draws attention to the difficult questiomodv to choose priors
on phenomenological parameters, for which theoreticaloeiag offers poor or
no guidance (as in the inflationary model comparison exa@ipbee).



Recent advances in cosmological Bayesian model comparison 11

Astronomer’s prior 10! | Curvature scale prior

103
102

100 |

10!

Probability density
Probability density

100

10-!

1072 |
PSR NS SR S (N SO SO S S N Eul L ol
-0.01 0 0.01 10-8 104
QK ‘QK‘

enl
10-2

P ol
-0.02

10-2

Fig. 3 Model-averaged marginal posterior probability distribotfor the curvature parameter, as-
suming the Astronomers’ prior (left panel) and the Cunvatscale prior (right panel) for the cur-
vature parameter. In the right panel, the solid line appgbedosed Universesi < 0), while the
dotted line to open Universe®f > 0). The peaks represent the Dirac delta function encommassi
the probability mass associated with flat models, a conagotr of probability effect coming from
Occam'’s razor. From [23].

e How do we deal with Lindley’s paradox?It is simple to construct examples
of situations where Bayesian model comparison and cldssjpathesis testing
disagree (Lindley’s paradox [32]). This is not surprisiag,frequentist hypoth-
esis testing and Bayesian model selection really ask diffequestions of the
data [2]. As Louis Lyons aptly put it: “Bayesians addressdhestion everyone
is interested in by using assumptions no—one believesevigitjuentists use im-
peccable logic to deal with an issue of no interest to any§@’ However, such
a disagreementis likely to occur in situations where thealigs weak, which are
precisely the kind of “frontier science” cases which arerttest interesting ones
(e.g., discovery claims). Is there a way to evaluate e.gldbe function from
making the “wrong” decision about rejecting/accepting alai®d

e How do we assess the completness of the set of known modeB&yesian
model selection always returns a best model among the orieg bempared,
even though that model might be a poor explanation for thdadla data. Is
there a principled way of constructing absolutescale for model performance
in a Bayesian context? Recently, the notion of Bayesian jmtboduced in [34],
has been used to extend the power of Bayesian model seléztiomspace of un-
known models in order to test our paradigm of&DM cosmological model. It
would be useful to have feedback from the statistics comtyahiout the valid-
ity of such an approach, and whether similar tools have djréaen developed
in other contexts.

e Is there such a thing as a “correct” prior? In fundamental physics, models
and parameters (and their priors) are supposed to repr@gbait in an ideal-
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ized way) the real world, i.e., they are not simply usefulresgntation of the
data (as they are in other statistical problems, e.g. aseabial social sciences).
In this sense, one could imagine that there exist a “corrpdtr for e.g. the

parameter®© of our cosmological model, which could in principle be dedv
from fundamental theories such as string theory (e.qg., isteltltion of values

of cosmological parameters across the landscape of strawgyt). This raises in-
teresting statistical questions about the relationshipvéen physics, reality and
probability.
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