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Abstract To flourish in the new data-intensive environment of 21st century science,
we need to evolve new skills. These can be expressed in terms of the systemized
framework that formed the basis of mediaeval education – thetrivium (logic, gram-
mar, and rhetoric) andquadrivium (arithmetic, geometry, music, and astronomy).
However, rather than focusing on number, data is the new keystone. We need to un-
derstand what rules it obeys, how it is symbolized and communicated and what is
its relationship to physical space and time. In this paper, we will review this in terms
of the technologies and processes that this requires. We contend that, at least, an ap-
preciation of all these aspects is crucial to enable us to extract scientific information
and knowledge from the data sets which threaten to engulf andoverwhelm us.

1 Introduction

Teaching in the great universities of the Middle Ages focussed on the seven liberal
arts: thetrivium - logic, grammar, and rhetoric -, and thequadrivium - arithmetic,
geometry, music, and astronomy. Training and competency inthese subjects was
believed sufficient to form an individual with the necessaryintellectual capabilities
to pursue a career or further study in natural philosophy. Today’s natural philoso-
phers are schooled in the arts of empirical, theoretical, and computational scientific
methodology as preparation for their professional careers. However, the vanguard
of the data revolution is now upon us with high-dimensional,high-volume, feature-
rich data sets becoming an increasingly common aspect of oureveryday workplace
and we are ill-prepared.

To meet this challenge, a fourth paradigm [1] is emerging: the so-called data-
intensive science orx-informatics (wherex is the science of choice, such asbio-
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informatics,geoinformatics orastroinformatics), which will support and drive sci-
entific discovery in the 21st century. This is not just an incremental development on
what has gone before but something entirely new and we’re still trying to figure out
not only what shape it is and where its boundaries lie but, more fundamentally, what
its basic rules are. Yet, at the same time, it would not be unfamiliar to a 13th century
scholar.

The core of the mediaeval syllabus was a systemization of knowledge - what rules
does it obey, how is it symbolized and how is it communicated -and, in particular,
numerical knowledge and the relationship of number to physical space and time.
Arithmetic, for example, was the study of pure number whereas music was the study
of number in relation to time [2]. In this paper, we aim to showhow the new art of
data science can similarly be framed as a systemization ofdata and its relationship
to space and time, particularly in regard to its technological aspects. Those this has
relevancy to many sciences, our broad theme will be astronomy.

2 The logic of data

Just as alchemists thought of mercury as theprima materia (first matter) from which
all metals were formed, so scientists consider data to be thebasis of all understand-
ing. Yet it is a commodity as fluid and elusive as its elementalcounterpart. Great cost
and effort is expended by empiricists to measure it, computationalists to imitate it
and theoreticians to formulate it but, even then, do we really understand what we
are working with. Data is multifaceted: it can be both quantitative and qualitative,
viewed at the level of raw numerical or symbolic values or in terms of instanti-
ations of abstract concepts, and with patterns in it interpreted as information and
knowledge through the laws of deductive reasoning. Even theword itself is open to
speculation [3].

Hogg & Lang [4, 5] argue that most of astronomy has been conducted through
catalogues, an inferior data product, derived from raw databut missing the nec-
essary knowledge about the data – how it was analysed, errorsestimated, etc. – to
support any sophisticated statistical inferencing, such as resolving deblending issues
in SDSS. Anything beyond raw data values is metadata and needs to be sufficiently
described, preferably in terms of a (Bayesian) posterior probability model, so that
arbitrary questions (cast as hypotheses) can be asked of it with maximal usage of
the available information. Taken to its extreme, the ultimate model would be of the
entire sky through wavelength and time from which any astronomical image ever
taken at any time with any equipment in any configuration could be generated and
thus anomalies in any data easily identified.

Semantics provides an alternative but complementary approach, framing knowl-
edge about data in terms of programmable structures rather than likelihood func-
tions. Semantic constructs such as ontologies allow domainknowledge to be ex-
pressed in a machine-processible format in terms of classes, properties (relation-
ships) and operations and data as instances of these [6]. Logical inferencing over the
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classes and the instances allows inconsistencies in both the data and its description
to be determined. Data with different descriptions/interpretations can be efficiently
combined/reconciledby machines to construct data sets of wider scope and applica-
bility than originally intended; e.g., multiwavelength data sets formed by combining
single filter/passband observations of astronomical objects allow their spectral en-
ergy distributions to be studied but need a proper treatmentof flux values in each
component data set, which information is encoded in their ontologies or equivalent
structures.

We should never just blindly work with data, particularly asit becomes ever more
complex. Explorations may skirt around full and proper treatments but understand-
ing the rules that data obeys and manipulating this logic through inferencing, be it
statistical or logical, is necessary for validatable and replicable discovery. Develop-
ing such systems and ensuring that they are performant in theface of forthcoming
data expectations is a real challenge, however, and not one to be easily glossed over
but it is one that can be met by interdisciplinary engagementacross the vertical silos
of individual sciences.

3 The grammar of data

To the mediaeval mind, unravelling the mysteries of the world lay in decoding
the symbolic languages that Nature employed to hide her secrets. Everything was
charged with meaning, be it through number, colour, geometry, or some more sub-
tle aspect or property. The wise man could read the hidden messages whereas the
fool saw just the forms, understanding nothing further of their meaning. Flowers,
for example, were not just something cultivated in monasticgardens but each type
carried a specific significance. The symbolism of data is far more profane: complex
objects are converted to sequences of bits for persistence and communication but
there are still a variety of representations (data serialization formats), each with a
specific meaning and purpose.

At its base level, data is comprised of numbers or symbols, normally stored in a
digital (binary) representation. Whilst every piece of datacould just be treated as an
amorphous chunk of bits, the utility of this approach is really limited to large data
objects (blobs), such as the streaming multimedia that forms an increasing fraction
of web traffic. Data is far more manipulable if it is structured in some way and a de-
scription of that structure is available. It is of even greater advantage if the structure
is independent of any specific hardware or software and machine-processible, e.g.,
a CSV file with a handwritten description of its columns is not. There is also a dis-
tinction between formats used for raw data, which are largely binary, and metadata
and derived data, such as catalogues, which are more structured and predominantly
textual.

Raw binary formats tend to be domain specific, although thereis some usage
of FITS outside of astronomy. In common with other formats, such as HDF5 [7],
descriptions of the binary structures and their metadata (often combined) are sepa-
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rable. CDF [8] and netCDF [9] take the concept even further bydefining a common
data model for scientific data sets, which has its own associated API. This handles
data reading, the coordinate systems the data are expressedin and specific types of
data and divorces the data user entirely from the physical details of its storage.

Probably the most familiar textual data representation is XML, one of the core
web service technologies. Its structure can be described ina variety of ways, e.g.,
DTD, XML Schema, RelaxNG, etc., and it is well-suited to represent hierarchical
structures. A frequent criticism of it, however, is that itsverbosity can render it an
ineffectual format, particularly where processing speed is a factor. The bandwidth
and storage required for XML representations can be an orderof magnitude more
than for non-XML versions of the same data. Even binary XML [10] is not really
viable: the format is more compact but performance issues persist, arising from poor
XML parsing technologies [11].

JSON [12] was designed specifically as a lightweight alternate to XML and is
used by many Web 2.0 applications so that browsers are the primary consumers.
The structure of a JSON data object can be described (in a JSONSchema [13]) but
this mechanism is much less advanced than the equivalent XMLsystems. As with
all textual formats, parsing on a character-by-character basis remains the bottleneck,
although the advent of native JSON support rather than an interpreting library has
improved the performance of modern browsers.

Google’s Protocol Buffers [14] follows a similar abstraction path to CDF/netCDF
again was designed to be a faster alternate to XML. Data structures are defined in
terms of an interface description language (called Proto Definition) and compiled
to create libraries to access and manipulate those structures. The actual format of
the underlying data is immaterial – the default data format is binary, but textual
formats, such as XML and JSON, may also be used –, the libraries provide the
necessary interfaces to it. Apache Avro [15], originating in the Hadoop framework
[16] aimed at large data sets, follows a similar approach, employing JSON to define
its data structures but only using a compact binary data format.

With larger amounts of data, storage and bandwidth become a premium and for-
mats need to be optimized accordingly. The meaning of the data, however, lies in its
inherent structure and making this independent of the actual arrangement of bytes
is no different to abstracting the meaning of creation from its encoding in the world
around us.

4 The rhetoric of data

Students in the Middle Ages were drilled by rote in the skillsof writing letters and
sermons, drawing on the rhetorical teachings of classical antiquity. It was presup-
posed that the structure of language corresponded to that ofbeing and understand-
ing and therefore the manner and style of communicating welland correctly was
important, employing the appropriate tone and linguistic constructs for the given
subject matter (an appreciation that contributed to the scientific method). Data is,
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in comparison, unconcerned with the nature of what it represents when it is being
communicated but does still need to be communicated well andcorrectly.

Physical transportation of stored data – the so-called sneakernet method – re-
mains one of the most efficient and reliable means of communication, sacrificing
latency for high throughput, and employed by many large astronomy projects as
well as commercial service providers. However, every instance remains a bespoke
solution, defying standardization, with the exact communication details only known
between the sender and the receiver. When the desire is to communicate data to
potentially millions anywhere and at any time, alternate solutions are required.

We live at the time of greatest interconnectivity in human history and, ignoring
politics and physical limitations, the same should continue to be true of tomorrow
for some time. However, the existing infrastructure is insufficient for our needs:
we’ve officially run out of IPv4 addresses and the Internet pipes are straining under
the pressures of streaming media. Next generation efforts,such as Internet2 [17],
are developing the advanced capabilities that are required, e.g., the on-demand cre-
ation and scheduling of high-bandwidth, high-performancedata circuits. There are,
however, also techniques that can be used to maximize the useof the current setup.

Conventional data transfer technologies rely on a single stream/channel between
the sender/provider and the receiver to carry the data, which typically does not make
full use of the available bandwidth. Chunking up the data andsending it over multi-
ple streams to the receiver achieves a much greater use of bandwidth, e.g., GridFTP
[18] works in this way. These streams can either come from multiple providers, each
with their own (partial) copy of the data (just the requestedchunk needs to be avail-
able), or a single provider running parallel streams. In theformer case, the receiver
orchestrates which chunks are requested from which provider based on their adver-
tised availability whereas, in the latter, either the receiver or the sender can be the
orchestrator. Once the receiver has a chunk, it can also become a provider for that
chunk – this is the basis for many peer-to-peer transport systems.

Data streams typically use TCP packets for their transport but this can exhibit
poor performance in long distance links, particularly whenthe bandwidth is high,
or when multiple concurrent flows are involved with different data transfer rates.
UDT [19] employs UDP packets instead to achieve much faster rates than TCP can
but with its same reliability. Other solutions involve fine-tuning TCP specifically for
high performance networks, modifying the TCP protocol or employing a newer one
designed to overcome these issues, such as SCTP [20].

Not all data formats encode their information in as efficienta manner as achiev-
able and it is often possible to reduce the size of a data object for transmission
(or storage) by compressing it. Significant improvements can be achieved, particu-
larly for textual data, with generic compression routines such as gzip and bzip2. For
astronomical binary data – images and tables – FITS tile compression [21] offers
better performance than gzip or bzip2, both in terms of speedand size reduction.
It also preserves the FITS headers (structure description)uncompressed for faster
access. In fact, with the appropriate library (CFITSIO), compressed data should be
the default mode for operation with decompression never being necessary.
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A thousand years ago, data was a precious commodity, residing in select locations
and to be safeguarded at all costs. Transmitting it was a laborious task, requiring
many hours of effort to encode it into a suitable medium. Small data volumes in
the information age have led us to accept a contrary positionas the norm but the
pendulum is now swinging back. Ideally data would never needto be transferred
from one location to another with all computation possible in situ. However, when
it does, it is possible to communicate it well and correctly.

5 The arithmetic of data

From the abacus to the algorithm, arithmetic was concerned less with reckoning
than with understanding the nature of number, its properties, and the uniqueness of
numerical series obtained by certain constant relationships. It was far more quali-
tative than quantitative, motivated by a desire to divine the presence of an unseen
hand in Nature expressed in the beauty of Platonic perfection. Whilst we do not seek
transcendence in data, exploring its nature and its properties is still an illuminating
experience.

The utility (or value) of data lies in its ability to convey information. This is a
highly variable quantity, dependent on the size and potential impact of its contents,
i.e., how supportive or challenging they are to the current paradigm, as well as its
timeliness. The relative utility of individual pieces of data can be ranked, producing
an overall trend that is logistic: initial data in an area is approximately exponen-
tial in utility, e.g., observations of 10 Type Ia supernovae(SNe Ia) in the redshift
range 0.16≤ z ≤ 0.62 suggest an accelerating universe [22]; then, as progressively
more data becomes available, saturation occurs and its utility slows, e.g., succes-
sive observations supporting the SNe Ia results; and at maturity, it has essentially
zero utility, e.g., surveys are regularly showing consistent behaviour. The metatrend
may well be a succession of logistic behaviours or approaching something that is
multiply logistic, depending on how much new paradigms redefine the utility of old
data.

Unprecedented progress along these logistic trends is being driven by two fac-
tors. Firstly, the future is characterized by massive parallel streams of (small) data
events rather than large monolithic slabs of data. The synergistic nature of data (as
expressed in Szalay’s law that the utility ofN comparable data sets isN2) means
that these streams clearly lead to potentially rapid progress along the logistic curve,
providing that they are linkable. Paradoxically the adventof the data-intensive era
marks the inflection point in utility growth for single data sets.

Secondly, there is the increasing pace of data acquisition,driven by exponen-
tial growth rates in technology (in particular, Moore’s lawregarding the transistor
density of integrated circuits). Some believe that these rates cannot continue indef-
initely: at some stage, either the relative doubling times of different technologies
will become incompatible – the slowest one defining the breaking point –, or one of
them will come up against the hard edge of some physical law, or the economics of
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continued growth will cease to be attractive or advantageous. Others feel that new
technologies will arise to keep the exponential growth up atequivalent rates, at least,
if not accelerating ones.

Power considerations are an increasingly important aspect. Already in 2004, mi-
croprocessor clock rates flatlined owing to power dissipation limits, although in-
creasing the number of cores per chip has maintained the growth rate for compu-
tational performance. Exascale systems (desktop petaflop/embedded teraflop) have
predicted power needs of∼100 MW [23] but even commodity-level processors are
heading towards a power wall. One mitigating strategy is to employ GPUs for as
much general purpose computation as possible [24] – they offer far better flop/Watt
performance than CPUs. However, they must be supported by a CPU to run the
operating system and manage the GPU device. Using a low-power CPU processor,
which would spend much of its time idling, is a viable short-term solution but, in-
evitably, trans-silicon technologies will need to be considered – these require lower
energy but at a cost of slower clock speeds.

If the universe is fundamentally reducible to a set of equations then there is a
finite amount of information to be extracted from data. The extent to which we can
approach that limit is determined by the technology and energy available to us in
that pursuit, although ultimately the law of diminishing returns may still render it
unattainable. If, however, the world is unknowable then gathering data and deriving
information from it are endless activities.

6 The geometry of data

The great cathedrals of mediaeval Europe were intended as sacred mirrors of cre-
ation, reflecting the design and structure of the universe through the laws and forms
of geometry, translated by the master stonemason in imitation of the work of his
divine master. By the same token, the great data centers of tomorrow will reflect the
aspirations of master scientists and technologists to facilitate the study of the design
and structure of the universe through the laws and forms of a new geometry, the
architectural order of vast collections of data.

The physical media of sacred geometries are well understood, be it Caen stone
and Purbeck marble or hard drives. Petascale storage systems can be constructed
from commodity Terabyte-sized components for approximately $50000/PB at the
time of writing, although suitable precautions must be taken to protect against the
high failure rates and subsequent data loss that are associated with ”cheap” com-
modity disks. The art and skill then lies in layering the dataon these in as effecient
and effectual a manner as possible according to user constraints.

A standard architecture for high throughput data that is intended to be predomi-
nantly read and rarely overwritten or appended (e.g., for data processing) is to break
it up into fixed size chunks (typically 64 MB) and then distribute multiple copies
(typically three, two on the same rack and one on a different one) of each chunk
across the disk cluster (see, for example, Google FS [25] or its open-source equiva-
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lent, HDFS [26]). This provides reliability against the potential inadequacies of the
underlying hardware and can be fine-tuned (more copies) for specific data where
greater demand or protection is anticipated. A central/master node maintains the list
of which chunk is where and any attendant metadata, and also the list of all opera-
tions involving data. This does, however, present an obvious single point of failure
and can limit scalability (distributing the master node is apossible solution).

Such systems are optimized for very large data sets with a small number of con-
stituent parts. When there are large numbers of small files in adata set, the dominant
process during runtime execution of a computation on that data set is locating the
relevant chunks, i.e., calls to the master node [27]. HDFS mitigates this by defining
a specific data structure for such situations – the sequence file, which is essentially
a container of smaller files bundled with an index – vastly reducing the number of
files on disk that need to be processed. Further improvementscan be obtained by
structuring sequence files according to some prescription,e.g., spatial or temporal
location of image files, rather than just randomly grouping files into them.

Alternate data scenarios involve low-latency random access (high availability) to
the data, e.g., retrieving thumbnail images, or very large numbers of varying sized
files with multiple concurrent writes, e.g., log files. In these cases, approaches based
around distributed multi-dimensional sorted maps, such asGoogle’s BigTable [28]
or Hadoop’s open-source equivalent, HBase [29] (both builton top of GFS and
HDFS respectively), or more general distributed data and metadata architectures,
such as Swift [30] or iRODS [31], are more appropriate.

All these physical architectures broadly have no knowledgeof the structure of
the data that they are dealing with. However, there is a subclass that is concerned
specifically with the type of data that one would traditionally put in a (relational)
database (RDBMS). RDBMSs do not function well beyond∼100 TB in size [32]
but there is a clear need for equivalent systems to support petascale catalogs, etc.
BigTable and its variants belong to a superclass of systems known as NoSQL [33],
which provide distributed storage for structured data, andcan used as scaled equiva-
lents to databases for many types of data. However, a better match for scientific data
is afforded by SciDB [34] which is a column-oriented (ratherthan row-oriented like
a RDBMS) system that uses arrays as first-class objects rather than tables and is still
ACID (like a RDBMS but unlike most NoSQL solutions).

The intricate geometries that we employ in our data centers with replicated hi-
erarchical patterns are no different to those used by stoneworkers ten centuries ago
in their own towering edifices. Both are intended to reflect our knowledge of the
design and structure of the universe itself, expressed in human works.

7 The music of data

The ancients believed that the heavens were pervaded by the harmony of the spheres,
the majestic fugue created by the movements of the celestialbodies. The mediaeval
curriculum formalized this, along with the internal fugue of the human body and
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the audible fugues that we could create, into the concept ofmusica, which studied
the progression of proportions through time according to well-established patterns
and rules. The progression of data through time as a result ofcomputations on it is
a similar fugue and, in the case of large data sets, there are anumber of identifiable
patterns.

The predominant such computational pattern today is the embarrassingly parallel
task, which describes a computation for which little or no effort is required to sepa-
rate it into a number of parallel tasks, often with no dependency between them, e.g.,
anything requiring a sweep through a parameter space. Thesecan then be distributed
across the available processors, bringing a substantial reduction to the computation
time in comparison with a straightforward sequential approach. If the processors can
be selected so that the data they require is local (data locality), this further reduces
the computation time (in fact, this is a general principle with large data sets – bring
the computation to the data).

Several frameworks exist for managing these computations:Condor [35] and
BOINC [36] will handle generic jobs on general pools of machines, ranging from
local resources dedicated to the process to spare cycles scavenged from online re-
sources anywhere in the world (the usual scenario for BOINC), although data is
invariably transferred to the computation with these. Notethat GPUs offer an in-
creasingly popular alternative to CPU clusters with singlehigh-end chips offering
performance speed-ups of up to∼1000 compared to single CPUs, assuming appro-
priate code parallelization. In fact, GPU clusters make bulk brute force calculations
viable over state-of-the-art CPU algorithmic approaches,for example, inn-point
correlation functions [37].

MapReduce [38], and its open-source equivalent, Hadoop [16], take a different
approach by expressing jobs in terms of two standard operations – map and reduce,
instances of which (mappers and reducers) are deployed to the compute resources
holding the data to be processed (thus ensuring data locality). A mapper transforms
its input data (as (key, value) pairs) to an intermediate setof different (key, value)
pairs. Gathering these from all mappers, they are reorderedand the group of data
for each different key is sent to a reducer. Finally the outputs of the reducers are
collected and returned as the overall result of the computation.

Not all computations are expressible in this form – those which require a large
amount of state information to be shared between mappers, e.g., referencing a com-
mon training set, with a lot of fine-grained synchronizationcan be problematic,
although those involving iterative processes can often be expressed as chains of
MapReduce tasks. An alternate pattern is to apply a streaming solution to the com-
putation, i.e., one which only requires a single pass through the data. Typically these
involve an incremental (online) formulation of the computational algorithm which
updates with each new data point. Further optimizations arepossible for specific
types of computation, such as stochastic gradient descent for some types of machine
learning. Obviously for large data sets, computations based on a single reading of
the data are ideal and, in some cases, such algorithms also lend themselves to paral-
lelization.
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In the same way that polyphony lay are the heart of the mediaeval fugue with
multiple voices combining to form a harmonic whole, parallelization is at the core
of the modern data fugue with thousands of cores and threads acting in concert
to transform vast data sets into harmonic representations of our knowledge of the
cosmos.

8 The astrology of data

”As above, so below” underpinned the mediaeval conviction that patterns in the
heavens reflected, or even presaged, happenings here on Earth in all spheres of life,
from personal health to affairs of state to triumphs and disasters.Astronomia was
both the science of observing these patterns and interpreting them, drawing on the
corpora of antiquity and Islamic thought. The plans for creation were writ large
in the celestial arrangements of stars and planets and we could divine them by
proper study. Data mining is ”the semi-automatic discoveryof patterns, associa-
tions, changes, anomalies, and statistically significant structures and events in data”
[39] and is the mainstay of astroinformatics.

The application of data mining to a data set really has two primary goals [40]:
predicting the future behaviour of certain entities based on the existing behaviour
of other entities in the data (prediction) and finding human-interpretable patterns
describing the data (description). The suite of available data mining techniques,
originating primarily from computer science (particularly artificial intelligence re-
search) and statistics, can then be regarded as falling intoone or more of these cate-
gories: classification, regression, clustering, summarization, dependency modelling,
and change and deviation (or outlier) detection.

The process of data mining extends well beyond just the casual employment of
a particular algorithm, however. The data of interest first has to be collected and
carefully prepared for analysis, e.g., normalization, handling missing values, bin-
ning, sampling, etc. The assumptions and limitations of theparticular technique that
is going to be applied have to be assessed, e.g., the specific number of clusters to
be defined, and, in many cases, this will require multiple applications of the algo-
rithm to fully determine these. Even then, the outcome has tobe validated, either
by rerunning the analysis on subsets of the data and/or usingsome particular mea-
sure of quality. Finally, the procedure is understood well enough that results can be
interpreted and it can be used with further and wider data samples.

An important aspect of data mining is the incorporation of appropriate prior
knowledge. Statistical inferencing (see section 2) is one approach to this but it builds
its arguments on probabilistic models of the data and not on the actual observed
values. Thus its interpretations rest on the assumption that the model is a good de-
scription of reality and not on the observations. Folding the knowledge into the
data mining algorithm at least means that any interpretations are data-based, even
if the knowledge might be model-derived. From semantic constructs, such as on-
tologies, similarity metrics can be defined which encode thedegree to which two
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concepts share information. These quantitative measures of conceptual similarity
can be then be incorporated into standard data mining algorithm formulations, giv-
ing knowledge-driven data mining.

Of all the patterns discerned in the heavens by mediaeval scholars, the most vital
was thecomputus, which allowed the determination of the date of Easter. The utility
of the patterns that we have discovered in astronomical datahas led to the discovery
of new objects, improved processing, object detection and classification, and better
photometric redshifts [41].

9 The scholasticism of data

Thetrivium and thequadrivium created a scholastic culture in which all phenomena,
both natural and artificial, were subject to interrogation and symbolic interpretation.
The liberal arts not only conferred the necessary skills to uncover the knowledge
hidden throughout creation but provided a framework onto which these discoveries
could be attached and understood. In particular, the properties and relationships of
numbers, unchanging and endless, were a path to divine revelation. Our desire to
reveal the inner workings of the universe is unchanged but weno longer require it
to be numinous. The scientific method which arose out of the dialectic criticisms of
the Middle Ages is founded on rational thought and logic, dealing with hard data
and facts, rather than association and exegetical consistency.

We have shown, however, how the same themes run through our contemporary
approach. In our vast data sets, we are still concerned with the structures that we
employ to represent our knowledge, communicating them welland correctly, and
how we can meaningfully architect them. We still need to understand what it is that
we are studying and what rules apply. And we still need to knowhow to look for the
meaningful patterns that we want to uncover. Only with this grounding can we hope
to manage the overwhelming volumes and complexities of datathat are facing us.

Finally, this has to be a community effort, both international and interdisciplinary.
The challenges for astronomy are the same for climate science, for genomics, for
any 21st century enterprise. Efforts such as the International Virtual Observatory
Alliance [42] are a step in the right direction but we need something that is truly
universal, educating at all levels and in all subjects. Data, like its mediaeval coun-
terpart, number, must be a first-class entity in our worldview, and not just from a
technological standpoint. From a future vantage point, today will be regarded as
the point from which we emerged from the Dark Ages of data and initiated a truly
modern perspective.
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