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Abstract To flourish in the new data-intensive environment of 2&ntury science,
we need to evolve new skills. These can be expressed in tefrthe gystemized
framework that formed the basis of mediaeval education +rtkiem (logic, gram-
mar, and rhetoric) anduadrivium (arithmetic, geometry, music, and astronomy).
However, rather than focusing on number, data is the newtdegsWe need to un-
derstand what rules it obeys, how it is symbolized and conicated and what is
its relationship to physical space and time. In this papenwill review this in terms
of the technologies and processes that this requires. Werbthat, at least, an ap-
preciation of all these aspects is crucial to enable us raetscientific information
and knowledge from the data sets which threaten to engulbaexdvhelm us.

1 Introduction

Teaching in the great universities of the Middle Ages foedssn the seven liberal
arts: thetrivium - logic, grammar, and rhetoric -, and thggadrivium - arithmetic,
geometry, music, and astronomy. Training and competendliese subjects was
believed sufficient to form an individual with the necessatgllectual capabilities
to pursue a career or further study in natural philosophgays natural philoso-
phers are schooled in the arts of empirical, theoretical,camputational scientific
methodology as preparation for their professional carddosvever, the vanguard
of the data revolution is now upon us with high-dimensiohah-volume, feature-
rich data sets becoming an increasingly common aspect ahauyday workplace
and we are ill-prepared.

To meet this challenge, a fourth paradigm [1] is emerging: ¢b-called data-
intensive science ox-informatics (wherex is the science of choice, such bi®-
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informatics,gecinformatics orastroinformatics), which will support and drive sci-
entific discovery in the 2 century. This is not just an incremental development on
what has gone before but something entirely new and weltérgtng to figure out
not only what shape it is and where its boundaries lie butemuondamentally, what
its basic rules are. Yet, at the same time, it would not beruititar to a 13" century
scholar.

The core of the mediaeval syllabus was a systemization afllauge - what rules
does it obey, how is it symbolized and how is it communicatadd, in particular,
numerical knowledge and the relationship of number to pajspace and time.
Arithmetic, for example, was the study of pure number whereasic was the study
of number in relation to time [2]. In this paper, we aim to shimew the new art of
data science can similarly be framed as a systemizatidiatafand its relationship
to space and time, particularly in regard to its technolalgispects. Those this has
relevancy to many sciences, our broad theme will be astrgnom

2 Thelogic of data

Just as alchemists thought of mercury asghiena materia (first matter) from which
all metals were formed, so scientists consider data to bbabis of all understand-
ing. Yetitis a commodity as fluid and elusive as its elemertahterpart. Great cost
and effort is expended by empiricists to measure it, contjmutalists to imitate it
and theoreticians to formulate it but, even then, do we yaaiderstand what we
are working with. Data is multifaceted: it can be both quatitte and qualitative,
viewed at the level of raw numerical or symbolic values orémts of instanti-
ations of abstract concepts, and with patterns in it inttgat as information and
knowledge through the laws of deductive reasoning. Evemvtird itself is open to
speculation [3].

Hogg & Lang [4, 5] argue that most of astronomy has been caedubirough
catalogues, an inferior data product, derived from raw thattamissing the nec-
essary knowledge about the data — how it was analysed, e&strsated, etc. — to
support any sophisticated statistical inferencing, ssalesolving deblending issues
in SDSS. Anything beyond raw data values is metadata andsrieds sufficiently
described, preferably in terms of a (Bayesian) posteriobability model, so that
arbitrary questions (cast as hypotheses) can be asked @hinvaximal usage of
the available information. Taken to its extreme, the ultemaodel would be of the
entire sky through wavelength and time from which any astnoical image ever
taken at any time with any equipment in any configuration ddad generated and
thus anomalies in any data easily identified.

Semantics provides an alternative but complementary apprdraming knowl-
edge about data in terms of programmable structures ratherlikelihood func-
tions. Semantic constructs such as ontologies allow dokainvledge to be ex-
pressed in a machine-processible format in terms of clagseperties (relation-
ships) and operations and data as instances of these [6¢dlatferencing over the
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classes and the instances allows inconsistencies in betttia and its description
to be determined. Data with different descriptions/intetations can be efficiently
combined/reconciletly machinesto construct data sets of wider scope and applica-
bility than originally intended; e.g., multiwavelengthtdaets formed by combining
single filter/passband observations of astronomical dbjabow their spectral en-
ergy distributions to be studied but need a proper treatoifitix values in each
component data set, which information is encoded in theivlogies or equivalent
structures.

We should never just blindly work with data, particularlyilsecomes ever more
complex. Explorations may skirt around full and proper timeents but understand-
ing the rules that data obeys and manipulating this logioubh inferencing, be it
statistical or logical, is necessary for validatable arglicable discovery. Develop-
ing such systems and ensuring that they are performant ifatieeof forthcoming
data expectations is a real challenge, however, and nobdre dasily glossed over
but it is one that can be met by interdisciplinary engageraerass the vertical silos
of individual sciences.

3 Thegrammar of data

To the mediaeval mind, unravelling the mysteries of the wdaly in decoding
the symbolic languages that Nature employed to hide heetedEverything was
charged with meaning, be it through number, colour, geometrsome more sub-
tle aspect or property. The wise man could read the hiddesages whereas the
fool saw just the forms, understanding nothing further @itimeaning. Flowers,
for example, were not just something cultivated in monagdiclens but each type
carried a specific significance. The symbolism of data is farenprofane: complex
objects are converted to sequences of bits for persistamte@nmunication but
there are still a variety of representations (data seatitn formats), each with a
specific meaning and purpose.

At its base level, data is comprised of numbers or symbolsnalty stored in a
digital (binary) representation. Whilst every piece of dadgald just be treated as an
amorphous chunk of bits, the utility of this approach is Iseknited to large data
objects (blobs), such as the streaming multimedia that§@amincreasing fraction
of web traffic. Data is far more manipulable if it is structdiia some way and a de-
scription of that structure is available. It is of even gegatdvantage if the structure
is independent of any specific hardware or software and megtriocessible, e.g.,
a CSV file with a handwritten description of its columns is.ridtere is also a dis-
tinction between formats used for raw data, which are lgrbelary, and metadata
and derived data, such as catalogues, which are more sgdaod predominantly
textual.

Raw binary formats tend to be domain specific, although tiesome usage
of FITS outside of astronomy. In common with other formatsstsas HDF5 [7],
descriptions of the binary structures and their metaddtar{@ombined) are sepa-
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rable. CDF [8] and netCDF [9] take the concept even furtheddfjning a common
data model for scientific data sets, which has its own astwatié@Pl. This handles
data reading, the coordinate systems the data are expliessed specific types of
data and divorces the data user entirely from the physidalld@f its storage.

Probably the most familiar textual data representationMl_Xone of the core
web service technologies. Its structure can be describedvariety of ways, e.g.,
DTD, XML Schema, RelaxNG, etc., and it is well-suited to eg@nt hierarchical
structures. A frequent criticism of it, however, is thatverbosity can render it an
ineffectual format, particularly where processing spesed factor. The bandwidth
and storage required for XML representations can be an afderagnitude more
than for non-XML versions of the same data. Even binary XMQ][& not really
viable: the format is more compact but performance issuesgtearising from poor
XML parsing technologies [11].

JSON [12] was designed specifically as a lightweight alterma XML and is
used by many Web 2.0 applications so that browsers are th@apriconsumers.
The structure of a JSON data object can be described (in a J2B8&ma [13]) but
this mechanism is much less advanced than the equivalent ¥Mtems. As with
all textual formats, parsing on a character-by-chara@sistremains the bottleneck,
although the advent of native JSON support rather than @npirgting library has
improved the performance of modern browsers.

Google’s Protocol Buffers [14] follows a similar abstractipath to CDF/netCDF
again was designed to be a faster alternate to XML. Datatstesare defined in
terms of an interface description language (called Protfinidien) and compiled
to create libraries to access and manipulate those stasctlihe actual format of
the underlying data is immaterial — the default data forrsabinary, but textual
formats, such as XML and JSON, may also be used —, the lilsrarievide the
necessary interfaces to it. Apache Avro [15], originatinghie Hadoop framework
[16] aimed at large data sets, follows a similar approactpleying JSON to define
its data structures but only using a compact binary datadarm

With larger amounts of data, storage and bandwidth becomenaipm and for-
mats need to be optimized accordingly. The meaning of theg tatvever, lies in its
inherent structure and making this independent of the hatuangement of bytes
is no different to abstracting the meaning of creation fresxencoding in the world
around us.

4 Therhetoric of data

Students in the Middle Ages were drilled by rote in the slalisvriting letters and
sermons, drawing on the rhetorical teachings of classici@daity. It was presup-
posed that the structure of language corresponded to thmgiing and understand-
ing and therefore the manner and style of communicating aral correctly was
important, employing the appropriate tone and linguistiostructs for the given
subject matter (an appreciation that contributed to thergific method). Data is,
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in comparison, unconcerned with the nature of what it represswhen it is being
communicated but does still need to be communicated weltan@ctly.

Physical transportation of stored data — the so-calledkemeat method — re-
mains one of the most efficient and reliable means of comnatioit, sacrificing
latency for high throughput, and employed by many largeoastmy projects as
well as commercial service providers. However, every imstaremains a bespoke
solution, defying standardization, with the exact comroation details only known
between the sender and the receiver. When the desire is to woicate data to
potentially millions anywhere and at any time, alternat@tsons are required.

We live at the time of greatest interconnectivity in humastdry and, ignoring
politics and physical limitations, the same should corgitw be true of tomorrow
for some time. However, the existing infrastructure is ffisient for our needs:
we've officially run out of IPv4 addresses and the Internpepiare straining under
the pressures of streaming media. Next generation effeutd) as Internet2 [17],
are developing the advanced capabilities that are requergd the on-demand cre-
ation and scheduling of high-bandwidth, high-performadiata circuits. There are,
however, also techniques that can be used to maximize thef tise current setup.

Conventional data transfer technologies rely on a singéast/channel between
the sender/provider and the receiver to carry the datahwfmcally does not make
full use of the available bandwidth. Chunking up the datasentling it over multi-
ple streams to the receiver achieves a much greater useaiviiih, e.g., GridFTP
[18] works in this way. These streams can either come frontiptelproviders, each
with their own (partial) copy of the data (just the requestlednk needs to be avail-
able), or a single provider running parallel streams. Infthimer case, the receiver
orchestrates which chunks are requested from which probased on their adver-
tised availability whereas, in the latter, either the reeeor the sender can be the
orchestrator. Once the receiver has a chunk, it can alsareecprovider for that
chunk — this is the basis for many peer-to-peer transpotésys

Data streams typically use TCP packets for their transparttis can exhibit
poor performance in long distance links, particularly wilee bandwidth is high,
or when multiple concurrent flows are involved with diffetetata transfer rates.
UDT [19] employs UDP packets instead to achieve much faatesrthan TCP can
but with its same reliability. Other solutions involve fitwing TCP specifically for
high performance networks, modifying the TCP protocol opkaying a newer one
designed to overcome these issues, such as SCTP [20].

Not all data formats encode their information in as effic@mtanner as achiev-
able and it is often possible to reduce the size of a data bhjedransmission
(or storage) by compressing it. Significant improvementslimachieved, particu-
larly for textual data, with generic compression routingstsas gzip and bzip2. For
astronomical binary data — images and tables — FITS tile cessjpon [21] offers
better performance than gzip or bzip2, both in terms of s@e®tsize reduction.
It also preserves the FITS headers (structure descriptioodmpressed for faster
access. In fact, with the appropriate library (CFITSIOnpoessed data should be
the default mode for operation with decompression neverdoeecessary.
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Athousand years ago, data was a precious commaodity, rgsitgelect locations
and to be safeguarded at all costs. Transmitting it was ailamtask, requiring
many hours of effort to encode it into a suitable medium. $uhatia volumes in
the information age have led us to accept a contrary positsothe norm but the
pendulum is now swinging back. Ideally data would never neede transferred
from one location to another with all computation possibisitu. However, when
it does, it is possible to communicate it well and correctly.

5 Thearithmetic of data

From the abacus to the algorithm, arithmetic was conceressl With reckoning
than with understanding the nature of number, its properéiad the uniqueness of
numerical series obtained by certain constant relatigsshi was far more quali-
tative than quantitative, motivated by a desire to divine phesence of an unseen
hand in Nature expressed in the beauty of Platonic perfedfithilst we do not seek
transcendence in data, exploring its nature and its priege# still an illuminating
experience.

The utility (or value) of data lies in its ability to conveyfarmation. This is a
highly variable quantity, dependent on the size and paikimtipact of its contents,
i.e., how supportive or challenging they are to the curremagigm, as well as its
timeliness. The relative utility of individual pieces oftdaan be ranked, producing
an overall trend that is logistic: initial data in an area jp@ximately exponen-
tial in utility, e.g., observations of 10 Type la supernoy&&le la) in the redshift
range 016 < z < 0.62 suggest an accelerating universe [22]; then, as pragegss
more data becomes available, saturation occurs and ity ibws, e.g., succes-
sive observations supporting the SNe la results; and atrityatii has essentially
zero utility, e.g., surveys are regularly showing consisbehaviour. The metatrend
may well be a succession of logistic behaviours or approgceomething that is
multiply logistic, depending on how much new paradigms fieéethe utility of old
data.

Unprecedented progress along these logistic trends ig lagiven by two fac-
tors. Firstly, the future is characterized by massive palratreams of (small) data
events rather than large monolithic slabs of data. The gystar nature of data (as
expressed in Szalay’s law that the utility Nfcomparable data sets ) means
that these streams clearly lead to potentially rapid prxyadong the logistic curve,
providing that they are linkable. Paradoxically the advefithe data-intensive era
marks the inflection point in utility growth for single datets.

Secondly, there is the increasing pace of data acquisitiomen by exponen-
tial growth rates in technology (in particular, Moore’s laggarding the transistor
density of integrated circuits). Some believe that thetgsreannot continue indef-
initely: at some stage, either the relative doubling timeglifierent technologies
will become incompatible — the slowest one defining the brepgoint —, or one of
them will come up against the hard edge of some physical lathheoeconomics of
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continued growth will cease to be attractive or advantage@thers feel that new
technologies will arise to keep the exponential growth wgmaivalent rates, at least,
if not accelerating ones.

Power considerations are an increasingly important asp&etady in 2004, mi-
croprocessor clock rates flatlined owing to power dissipatimits, although in-
creasing the number of cores per chip has maintained thetlymate for compu-
tational performance. Exascale systems (desktop petafiii@dded teraflop) have
predicted power needs ef100 MW [23] but even commodity-level processors are
heading towards a power wall. One mitigating strategy isnpley GPUs for as
much general purpose computation as possible [24] — they falf better flop/Watt
performance than CPUs. However, they must be supported bylatG run the
operating system and manage the GPU device. Using a lowsoR# processor,
which would spend much of its time idling, is a viable shantrd solution but, in-
evitably, trans-silicon technologies will need to be cdeséd — these require lower
energy but at a cost of slower clock speeds.

If the universe is fundamentally reducible to a set of equegtithen there is a
finite amount of information to be extracted from data. Theekto which we can
approach that limit is determined by the technology andg@navailable to us in
that pursuit, although ultimately the law of diminishingues may still render it
unattainable. If, however, the world is unknowable themgahg data and deriving
information from it are endless activities.

6 The geometry of data

The great cathedrals of mediaeval Europe were intendedcasdsenirrors of cre-
ation, reflecting the design and structure of the univensmutgih the laws and forms
of geometry, translated by the master stonemason in imitaif the work of his
divine master. By the same token, the great data centersmirtow will reflect the
aspirations of master scientists and technologists ttititei the study of the design
and structure of the universe through the laws and forms ava geometry, the
architectural order of vast collections of data.

The physical media of sacred geometries are well understmd Caen stone
and Purbeck marble or hard drives. Petascale storage sy/stambe constructed
from commaodity Terabyte-sized components for approxitge$80000/PB at the
time of writing, although suitable precautions must be tat@protect against the
high failure rates and subsequent data loss that are assbeigh "cheap” com-
modity disks. The art and skill then lies in layering the daiathese in as effecient
and effectual a manner as possible according to user coristra

A standard architecture for high throughput data that isrided to be predomi-
nantly read and rarely overwritten or appended (e.g., fta geocessing) is to break
it up into fixed size chunks (typically 64 MB) and then distii® multiple copies
(typically three, two on the same rack and one on a differee) @f each chunk
across the disk cluster (see, for example, Google FS [25%$ @pien-source equiva-
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lent, HDFS [26]). This provides reliability against the potial inadequacies of the
underlying hardware and can be fine-tuned (more copies)piecic data where
greater demand or protection is anticipated. A centraliena®de maintains the list
of which chunk is where and any attendant metadata, andfadsiest of all opera-

tions involving data. This does, however, present an olsvgdngle point of failure

and can limit scalability (distributing the master node goasible solution).

Such systems are optimized for very large data sets with 8 saraber of con-
stituent parts. When there are large numbers of small fileglataset, the dominant
process during runtime execution of a computation on the gt is locating the
relevant chunks, i.e., calls to the master node [27]. HDR®ates this by defining
a specific data structure for such situations — the sequdec&fiich is essentially
a container of smaller files bundled with an index — vasthuciag the number of
files on disk that need to be processed. Further improvenamtde obtained by
structuring sequence files according to some prescripgi@n, spatial or temporal
location of image files, rather than just randomly groupitesfinto them.

Alternate data scenarios involve low-latency random ax(igigh availability) to
the data, e.g., retrieving thumbnail images, or very langmlvers of varying sized
files with multiple concurrent writes, e.g., log files. In seecases, approaches based
around distributed multi-dimensional sorted maps, sudB@sgle’s BigTable [28]
or Hadoop’s open-source equivalent, HBase [29] (both harilttop of GFS and
HDFS respectively), or more general distributed data anthdata architectures,
such as Swift [30] or IRODS [31], are more appropriate.

All these physical architectures broadly have no knowleglighe structure of
the data that they are dealing with. However, there is a agbdhat is concerned
specifically with the type of data that one would traditidyadut in a (relational)
database (RDBMS). RDBMSs do not function well beyentio0 TB in size [32]
but there is a clear need for equivalent systems to supptasgede catalogs, etc.
BigTable and its variants belong to a superclass of systemoaik as NoSQL [33],
which provide distributed storage for structured data,@rdused as scaled equiva-
lents to databases for many types of data. However, a bettiehrfor scientific data
is afforded by SciDB [34] which is a column-oriented (ratttean row-oriented like
a RDBMS) system that uses arrays as first-class objects tathetables and is still
ACID (like a RDBMS but unlike most NoSQL solutions).

The intricate geometries that we employ in our data centéis neplicated hi-
erarchical patterns are no different to those used by stork@ns ten centuries ago
in their own towering edifices. Both are intended to refleat knowledge of the
design and structure of the universe itself, expressednmanuvorks.

7 Themusic of data

The ancients believed that the heavens were pervaded bgtimohy of the spheres,
the majestic fugue created by the movements of the celéstiiés. The mediaeval
curriculum formalized this, along with the internal fuguktlbe human body and
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the audible fugues that we could create, into the concepiugifca, which studied

the progression of proportions through time according td-es&tablished patterns
and rules. The progression of data through time as a resatiraputations on it is
a similar fugue and, in the case of large data sets, thereraumhber of identifiable
patterns.

The predominant such computational pattern today is theaeassingly parallel
task, which describes a computation for which little or nfiorfis required to sepa-
rate it into a number of parallel tasks, often with no depegidetween them, e.g.,
anything requiring a sweep through a parameter space. Thashen be distributed
across the available processors, bringing a substantiattien to the computation
time in comparison with a straightforward sequential applo If the processors can
be selected so that the data they require is local (dataitipcadhis further reduces
the computation time (in fact, this is a general principléwarge data sets — bring
the computation to the data).

Several frameworks exist for managing these computatiGoasidor [35] and
BOINC [36] will handle generic jobs on general pools of maes, ranging from
local resources dedicated to the process to spare cyclesrgpad from online re-
sources anywhere in the world (the usual scenario for BOJN@Ehough data is
invariably transferred to the computation with these. Nbet GPUs offer an in-
creasingly popular alternative to CPU clusters with sirgigh-end chips offering
performance speed-ups of uptd000 compared to single CPUs, assuming appro-
priate code parallelization. In fact, GPU clusters maké bulite force calculations
viable over state-of-the-art CPU algorithmic approachiesgexample, inn-point
correlation functions [37].

MapReduce [38], and its open-source equivalent, Hadoo} {dke a different
approach by expressing jobs in terms of two standard opesatt map and reduce,
instances of which (mappers and reducers) are deployec tootmpute resources
holding the data to be processed (thus ensuring data icalimapper transforms
its input data (as (key, value) pairs) to an intermediatetdifferent (key, value)
pairs. Gathering these from all mappers, they are reordmmddhe group of data
for each different key is sent to a reducer. Finally the otgmi the reducers are
collected and returned as the overall result of the comijoutat

Not all computations are expressible in this form — thosectwihequire a large
amount of state information to be shared between mappersreferencing a com-
mon training set, with a lot of fine-grained synchronizatman be problematic,
although those involving iterative processes can oftenXpgessed as chains of
MapReduce tasks. An alternate pattern is to apply a strepsaitution to the com-
putation, i.e., one which only requires a single pass thndhg data. Typically these
involve an incremental (online) formulation of the compiaaal algorithm which
updates with each new data point. Further optimizationgpassible for specific
types of computation, such as stochastic gradient deszestime types of machine
learning. Obviously for large data sets, computations dbasea single reading of
the data are ideal and, in some cases, such algorithms atsthiemselves to paral-
lelization.
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In the same way that polyphony lay are the heart of the medidague with
multiple voices combining to form a harmonic whole, paid#&bgion is at the core
of the modern data fugue with thousands of cores and threadsyan concert
to transform vast data sets into harmonic representatibnsroknowledge of the
€COSmos.

8 Theastrology of data

"As above, so below” underpinned the mediaeval convictiget patterns in the
heavens reflected, or even presaged, happenings here brirEalitspheres of life,
from personal health to affairs of state to triumphs andsiesa.Astronomia was
both the science of observing these patterns and intemgréiiem, drawing on the
corpora of antiquity and Islamic thought. The plans for toeawere writ large
in the celestial arrangements of stars and planets and wd dizine them by
proper study. Data mining is "the semi-automatic discowefrypatterns, associa-
tions, changes, anomalies, and statistically significeiatgires and events in data”
[39] and is the mainstay of astroinformatics.

The application of data mining to a data set really has twmary goals [40]:
predicting the future behaviour of certain entities basedhe existing behaviour
of other entities in the data (prediction) and finding hunraefpretable patterns
describing the data (description). The suite of availald&adnining techniques,
originating primarily from computer science (particujadrtificial intelligence re-
search) and statistics, can then be regarded as fallingi@@r more of these cate-
gories: classification, regression, clustering, sumra#ion, dependency modelling,
and change and deviation (or outlier) detection.

The process of data mining extends well beyond just the tasoployment of
a particular algorithm, however. The data of interest fiss ko be collected and
carefully prepared for analysis, e.g., normalization,dtiaig missing values, bin-
ning, sampling, etc. The assumptions and limitations optir¢icular technique that
is going to be applied have to be assessed, e.g., the spadificen of clusters to
be defined, and, in many cases, this will require multipleliapfions of the algo-
rithm to fully determine these. Even then, the outcome hdsetoalidated, either
by rerunning the analysis on subsets of the data and/or gsimg particular mea-
sure of quality. Finally, the procedure is understood wedegh that results can be
interpreted and it can be used with further and wider datgpesn

An important aspect of data mining is the incorporation oprapriate prior
knowledge. Statistical inferencing (see section 2) is gpe@ach to this but it builds
its arguments on probabilistic models of the data and nothenattual observed
values. Thus its interpretations rest on the assumptidrtiieamodel is a good de-
scription of reality and not on the observations. Folding kmowledge into the
data mining algorithm at least means that any interpretatare data-based, even
if the knowledge might be model-derived. From semantic tooss, such as on-
tologies, similarity metrics can be defined which encodedbgree to which two
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concepts share information. These quantitative meastdresnceptual similarity
can be then be incorporated into standard data mining #hgofiormulations, giv-
ing knowledge-driven data mining.

Of all the patterns discerned in the heavens by mediaevalashthe most vital
was thecomputus, which allowed the determination of the date of Easter. Tty
of the patterns that we have discovered in astronomicallgegded to the discovery
of new objects, improved processing, object detection #asbification, and better
photometric redshifts [41].

9 The scholasticism of data

Thetriviumand thegquadrivium created a scholastic culture in which all phenomena,
both natural and artificial, were subject to interrogatiod aymbolic interpretation.
The liberal arts not only conferred the necessary skillsrtcover the knowledge
hidden throughout creation but provided a framework ont@tvthese discoveries
could be attached and understood. In particular, the ptiegeand relationships of
numbers, unchanging and endless, were a path to divineat@rel Our desire to
reveal the inner workings of the universe is unchanged butevilenger require it
to be numinous. The scientific method which arose out of thkediic criticisms of
the Middle Ages is founded on rational thought and logic,lidgawith hard data
and facts, rather than association and exegetical consiste

We have shown, however, how the same themes run through otengporary
approach. In our vast data sets, we are still concerned Wittstructures that we
employ to represent our knowledge, communicating them ardl correctly, and
how we can meaningfully architect them. We still need to usided what it is that
we are studying and what rules apply. And we still need to khow to look for the
meaningful patterns that we want to uncover. Only with thi@ugding can we hope
to manage the overwhelming volumes and complexities of tihatzare facing us.

Finally, this has to be a community effort, both internasibend interdisciplinary.
The challenges for astronomy are the same for climate sejdacgenomics, for
any 2F century enterprise. Efforts such as the InternationaludirObservatory
Alliance [42] are a step in the right direction but we need stiimg that is truly
universal, educating at all levels and in all subjects. Didta its mediaeval coun-
terpart, number, must be a first-class entity in our worldyiend not just from a
technological standpoint. From a future vantage pointayodill be regarded as
the point from which we emerged from the Dark Ages of data aitthted a truly
modern perspective.
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